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Abstract

This paper surveys methods that have been added to the micro-
econometrician�s toolkit over the past twenty-�ve years, and some re-
cent developments in these newer methods. These methods include
GMM, empirical likelihood, simulation-based estimation, quantile re-
gression, semiparametric estimation, robust inference, and bootstrap.
The paper also considers estimation of marginal e¤ects that can be
given a causative interpretation, notably treatment e¤ects, unobserved
heterogeneity, and common data complications of sampling and miss-
ing and mismeasured data.
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1 Introduction

Applied microeconometrics primarily applies regression methods to cross-
section and longitudinal economics-related data.

Most often the goal is to obtain estimates of one or more marginal ef-
fects. A stereotypical example is estimation of the e¤ect on earnings of a
one-year increase in education. A simple approach is OLS estimation of
a linear cross-section regression of log-earnings on years of schooling and
other control variables. Potential complications include nonlinearity (with
implications for estimation and statistical inference); endogeneity of the re-
gressor schooling (that is chosen by the individual); unobserved individual
heterogeneity (the marginal e¤ect even after controlling for regressors may
di¤er across individuals); and missing or mismeasured data.

In this paper I survey various methods to deal with these complications,
most developed over the past twenty-�ve years. Some of these methods
have already become well-established and command little current theoretical
research. Other methods, especially those that are currently active areas
of research, may or may not ultimately become part of the toolkit. An
impetus for many of these methods is increased computing power and data
availability.

The survey presumes the basic theory for least squares, maximum likeli-
hood and instrumental variables estimation of nonlinear cross-section mod-
els and linear panel data models, as these were well established by the
late 1970�s. Section 2 presents a summary of identi�cation. Newer estima-
tion methods that enable use of richer models, notably generalized methods
of moments, empirical likelihood, simulation-based methods (classical and
Bayesian), quantile regression, and semiparametric estimation, are presented
in Section 3. Recent developments in statistical inference, most notably ro-
bust standard errors and bootstrap methods, are presented in Section 4.
Section 5 presents a range of methods that have been developed to obtain
marginal e¤ects that can be given a causative interpretation even when ob-
servational data are used. A fundamental change in thinking is the use
of the potential outcomes framework and quasi-experimental approaches to
tease out causation. Section 6 discusses methods to control for unobserved
heterogeneity. Section 7 presents adjustments to standard methods that
incorporate the practical data complications of survey sampling schemes,
measurement error, and missing data.

The following notation is used. The typical observation is the ith observa-
tion, with scalar dependent variable yi, k�1 regressor vector xi, and, where
relevant, m� 1 instrument vector zi. Unless otherwise noted independence
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over i is assumed. At times it is convenient to denote the ith observation by
wi = (yi;xi) or wi = (yi;xi; zi). The parameter vector in general is a q � 1
vector �. In some cases this is specialized to a k � 1 parameter vector �.
Combining all N observations, y is the N �1 vector of dependent variables,
and X is the N�K regressor matrix. The linear regression model is written
as yi = x0i� + ui or y = X� + u.

The reader should be aware that this is a methods survey, rather than
a literature survey. It is not possible to cite more than a few relevant refer-
ences for each topic, leading to omission of the important contributions of
many authors. More complete references are given in the relevant texts by
Amemiya (1985), Greene (2003, �rst edition 1990), Davidson and MacKin-
non (1993), Wooldridge (2002), and Cameron and Trivedi (2005). The most
recent references given in this paper should provide a useful start to the
current literature.

2 Identi�cation

Introductory treatments of econometrics focus on specifying a parametric
model for the conditional distribution f(yjx;�), or for the conditional mean,
E[yjx] = g(x;�). Given speci�cation of f(�) or g(�) and a sampling process
such as random sampling or exogenous strati�ed sampling that provides no
additional complication, the emphasis is on estimation of the parameters
� or �, and on statistical inference based on these parameter estimates.
Identi�cation is discussed brie�y in the context of rank conditions to ensure
identi�cation in linear simultaneous equations models. More generally, for
nonlinear estimators in parameterized models Newey and McFadden (1994,
p. 2134) state that �The identi�cation condition for consistency of an ex-
tremum estimator is that the limit of the objective function has a unique
maximum at the truth�.

The literature on semiparametric modelling brings identi�cation much
more to the forefront. Identi�cation asks the question whether a model, or
key features of that model, can be estimated assuming an in�nitely large
sample is available and given the relevant sampling scheme. Only after
identi�cation is secured can one move on to estimation and inference given
a �nite sample. An example is a censored regression model, where we ob-
serve yi = y�i if y

�
i = x0i� + ui and yi = 0 otherwise, and ask whether �

is identi�ed given assumptions on the distribution of ui that fall short of
complete parameterization of the distribution of ui (such as assuming nor-
mality). In general there is no uni�ed theory and identi�cation conditions
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vary with the model being considered and the sampling process. Also not
all parameters may be identi�ed. For example, regression coe¢ cients may
be identi�ed only up to scale or an intercept may not be identi�ed while
slope parameters are. Pagan and Ullah (1999) provide many examples.

For nonparametric nonlinear simultaneous equations we consider model
r(yi;xi) = ui, where y and u are G� 1 vectors and x is K � 1. The model
is nonparametric identi�ed if it is possible to recover the unknown function
r(�) and the distribution of u from the joint distribution of (y;x). Matzkin
(2005), building on Brown (1983), provides identi�cation conditions when u
is independent of x.

Usually assumptions on the dgp are made su¢ ciently strong to ensure
point identi�cation or complete identi�cation. But this is not always the
case. Manski (1995, 2003, 2006) and related papers emphasize partial iden-
ti�cation or set identi�cation that merely provides bounds. For example,
suppose data are observed with error but it is known that at most 25 percent
of the data are mismeasured. Then the true population median, i.e. without
measurement error, is bounded by the lower quartile (all the mismeasured
observations are recorded as high values but are actually low values) and
the upper quartile (all low values are actually high values). The attraction
of partial identi�cation compared to point identi�cation is that it can rely
on weaker assumptions about the dgp. The bounds can be wide, however,
and additional information may permit tightening the bounds. Leading ap-
plications include Manski and Pepper (2000), Haile and Tamer (2003 ), and
Blundell, Gosling, Ichimura, and Meghir (2007).

Finally it should be noted that while much of the literature focuses on
identi�cation of parameters, this may not be necessary. In particular, many
studies in microeconometrics seek calculation of the marginal e¤ect on the
conditional mean of, say, the jth regressor, @E[yjx]=@xj jx=x� . This can be
achieved by nonparametric regression, such as the use of matching estima-
tors in the treatment e¤ects literature. And even where a model for E[yjx]
is posited, complete identi�cation of E[yjx] may not be necessary. For ex-
ample, consider a linear panel �xed e¤ects model where E[yitjxit] = x0it�
and xit includes a time-invariant variable, the kth say, with xik = xk. Then
even if xk is unobserved, �xed e¤ects estimation provides consistent esti-
mates of the remaining components of � and hence the marginal e¤ect. The
marginal e¤ects of other conditional moments can also be of interest. Exam-
ples include the conditional median, conditional quantiles and conditional
variance.
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3 Estimation

Generalized method of moments, which provides a quite general framework
for estimation, is presented in Section 3.1. Empirical likelihood, an adapta-
tion of GMM with di¤erent �nite sample properties is presented in Section
3.2. Simulation methods that permit classical and Bayesian methods to
be applied to a much wider range of models are presented in, respectively,
Sections 3.3 and 3.4. Quantile regression and semiparametric methods are
presented in, respectively, Sections 3.5 and 3.6.

3.1 Generalized Method of Moments

The starting point for GMM is the moment condition

E[h(wi;�)] = 0; (1)

where h(�) is an r � 1 vector.
The analogy principle, emphasized by Manski (1988) who attributes it to

Goldberger, proposes estimation using the sample analog of the population
condition (1). In the just-identi�ed case this leads to the method of moments
(MM) estimator b�MM that solves N�1Ph(wi;�) = 0.

In the over-identi�ed case that N�1P
i @hi=@�

0 has rank greater than q,
there are more moment conditions than parameters. Then Hansen (1982)
proposed the generalized method of moments estimator b�GMM that mini-
mizes the quadratic form

Q(�) =

�
1

N

X
i
h(wi;�)

�0
WN

�
1

N

X
i
h(wi;�)

�
; (2)

whereWN is an r � r symmetric full rank weighting matrix that is usually
data dependent. Under appropriate assumptions, including that (1) holds at
� = �0, the GMM estimator b� is asymptotically normally distributed with
mean �0 and estimated asymptotic variance matrix of sandwich form

bV[b�GMM ] = 1

N

� bG0WN
bG��1 bG0WN

bSWN
bG� bG0WN

bG��1 ; (3)

where bG = N�1P
i @hi=@�

0�� b� and bS is a consistent estimate of S0 =

plim 1
N

P
i

P
j h(wi;�0)h(wj ;�0)

0. Given independence over i, bS simpli�es
to bS = 1

N

P
i h(wi;

b�)h(wi; b�), while for clustered observations adaptations
similar to those given in Section 4.1 are used.
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A leading example is instrumental variables estimation. The condition
that instruments zi are uncorrelated with the error term ui = yi � x0i� in
a linear regression model implies that E[zi(yi � x0i�)] = 0. In the just-
identi�ed case the MM estimator solves

P
i zi(yi � x0i�) = 0, which yields

the instrumental variables estimator. In the over-identi�ed case the GMM
estimator minimizes [

P
i zi(yi � x0i�)]

0WN [
P
i zi(yi � x0i�)] = 0. The two-

stage least squares estimator is the special caseWN =
�
N�1P

i ziz
0
i

��1.
For just-identi�ed models the GMM estimator reduces to the MM es-

timator regardless of the choice of WN . For over-identi�ed models the
most e¢ cient GMM estimator based on the moment conditions (1), called
the optimum GMM (OGMM) or two-step GMM estimator b�OGMM , sets
WN = bS�1 where bS is a consistent estimate of S0. Then the OGMM esti-
mator has estimated asymptotic variancebV[b�OGMM ] = N�1( bG0bS�1 bG)�1:
In practice, however, it is found that the optimal GMM estimator su¤ers
from small sample bias, see Altonji and Segal (1996), and other simpler
choices of WN may be better. This has spawned an active literature, see
Windmeijer (2005), including that on empirical likelihood given in Section
3.2.

There are several attractions to GMM. First, it provides a natural exten-
sion of instrumental variables methods in over-identi�ed models from linear
to nonlinear models, and can be viewed as a generalization of nonlinear
2SLS. Second, it provides a unifying framework to estimation as it nests
many estimation procedures, including LS, with h(wi;�) = yi � x0i�, and
ML, with h(wi;�) = @ ln f(yijxi;�)=@�, as special cases. Third, it views
estimation as a sample analog to population moment conditions, the anal-
ogy principle emphasized by Manski (1988). Fourth, taking this view leads
naturally to conditional moment tests, see Section 4.2, that lead to model
moment speci�cation tests based on model moment conditions that are not
exploited in estimation.

A method closely related to GMM though less used is minimum distance
estimation. Suppose that the relationship between q structural parameters
and r > q reduced form parameters is that � = g(�). And suppose that we
have a consistent estimate b� of the reduced form parameters. An obvious
estimator is b� such that b� = g(b�), but this is infeasible since q < r. In-
stead the minimum distance estimator b�MD minimizes with respect to � the
objective function

QN (�) = (b� � g(�))0WN (b� � g(�)); (4)
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where WN is an r � r weighting matrix. The optimal MD estimator uses
weighting matrix WN = bV[b�]�1 in (4). This estimator is used mainly in
panel data analysis, see Chamberlain (1982, 1984), especially in estimation
of covariance structures, see Abowd and Card (1989).

The statistics literature rarely uses the GMM framework. This may be
because GMM is particularly useful for overidenti�ed models, notably IV
with surplus instruments, that are much more often used in econometrics.
Instead, for nonlinear models the statistics literature emphasizes the more
restrictive generalized linear models and generalized estimating equations
frameworks, see McCullagh and Nelder (1983, 1989).

3.2 Empirical Likelihood

Empirical likelihood is based on the same moment conditions as GMM, but
is a di¤erent estimation method with second-order asymptotic properties
that di¤er from GMM so that the estimator may have better �nite sample
properties.

Let �i = f(yijxi) denote the probability that the ith observation on y
takes the realized value yi. The empirical likelihood (EL) approach, intro-
duced by Owen (1988), maximizes the empirical log-likelihood function

QN (�1; :::; �N ) = N
�1
X
i

ln�i; (5)

subject to any model constraints.
With no model the only constraint is that probabilities sum to one.

This leads to maximum EL estimates b�i = 1=N , so the estimated density
function bf(yjx) has mass 1=N at each of the realized values yi, i = 1; :::; N ,
and the resulting distribution function estimate is just the usual empirical
distribution function.

With a model introduced attention focuses on the estimates for parame-
ters of that model. In the simplest case of estimation of a common popu-
lation mean �, the maximum EL estimate can be shown to be the sample
mean. A more general example is to specify a model that imposes r moment
conditions

E[h(wi;�)] = 0; (6)

the same condition as in (1) for MM or GMM estimation. The empirical like-
lihood approach maximizes the empirical likelihood function N�1P

i ln�i
subject to the constraint

P
i �i = 1, since probabilities sum to one, and the

additional sample constrained based on the population moment condition
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(6) that
NX
i=1

�ih(wi;�) = 0: (7)

Thus we maximize with respect to � = [�1:::�N ]0, �, �, and � the Lagrangian

LEL(�; �;�;�) =
1

N

NX
i=1

ln�i � �
 

NX
i=1

�i � 1
!
� �0

NX
i=1

�ih(wi;�); (8)

where the Lagrangian multipliers are a scalar � and an r� 1 column vector
�.

This maximization is not straightforward. First concentrate out the N
parameters �1; :::; �N . Di¤erentiating L(�; �;�;�) with respect to �i yields
1=(N�i)����0hi = 0. Then �nd � = 1 by multiplying by �i and summing
over i and using

P
i �ihi = 0. It follows that the N Lagrangian multi-

pliers �i(�;�) = 1=[N(1 + �0h(wi;�))]. The problem is now reduced to a
maximization problem with respect to (r + q) variables � and �, the La-
grangian multipliers associated with the r moment conditions (7) and the q
parameters �. Solution at this stage requires numerical methods, even for
just-identi�ed models with r = q. After some algebra, the log-likelihood
function evaluated at � is

LEL(�) = �N�1
NX
i=1

ln[N(1 + �(�)0h(wi;�))]: (9)

The maximum empirical likelihood (MEL) estimator b�MEL maximizes this
function with respect to �.

Qin and Lawless (1994) show that the MEL estimator has the same limit
distribution as the optimal GMM estimator. In �nite samples, however,b�MEL di¤ers from b�GMM . Furthermore, inference can be based on sample
estimates bG =

P
i b�i@hi=@�0��b� and bS = P

i b�ihi(b�)hi(b�)0 that weight by
the estimated probabilities b�i rather than the proportions 1=N .

Imbens (2002) and Kitamura (2006) provide recent surveys of empirical
likelihood. Objective functions other than N�1P

i ln�i may be used, such
as N�1P

i �i ln�i. Newey and Smith (2004) show that MEL has better
second-order asymptotic properties than GMM, and it appears that using
the weights b�i in forming bG and bS leads to improved �nite sample per-
formance. These results suggest that MEL may be better than optimal
GMM in applications, but MEL is not yet widely used as it is viewed to be
computationally more burdensome; see Imbens (2002) for a discussion.
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3.3 Simulation-Based ML and MM Estimation

ML estimation requires speci�cation of a density. In some cases the den-
sity includes an integral for which a closed-form solution does not exist, so
that conventional ML is not possible. Simulation-based estimation methods
enable ML estimation in this case by approximating the integral by Monte
Carlo integration, making many draws from an appropriate distribution.

Speci�cally, we suppose that the conditional density of y given regressors
x and parameters � = [�01 �

0
2]
0 is an integral

f(yjx;�) =
Z
f(yjx;u;�1)g(uj�2)du; (10)

where f(yjx;u;�1) which depends in part on unobservables u is of closed
form, but there is no closed form for the desired density f(yjx;�).

A leading example is unobserved heterogeneity. Then �1 denotes pa-
rameters of intrinsic interest, u denotes unobserved heterogeneity which
may depend on unknown parameters �2, and the integral will not have a
closed form solution except in some special cases. A second example is the
multinomial probit model. Then �1 denotes regression parameters, u de-
notes error term in a latent model that may have unknown error variances
and covariances �2, and, given m alternatives, the probability that a speci�c
alternative is chosen is given by an (m�1)-dimensional integral that has no
closed-form solution.

If the integral is of low dimension, then numerical integration by Gaussian
quadrature may provide a reasonable approximation to f(yjx;�). But these
methods can work poorly in higher dimensions often encountered in prac-
tice. For example, for multinomial probit numerical methods are felt to
work poorly if there are more than four alternatives.

Instead, the maximum simulated likelihood (MSL) method makes many
draws of the unobservables u from density g(uj�2). The MSL estimator
maximizes the simulated log-likelihood function

bLN (�) = NX
i=1

ln bf(yijxi;u(S)i ;�); (11)

where bf(�) is the Monte Carlo estimate or simulator
bf(yijxi;u(S)i ;�) =

1

S

SX
s=1

ef(yijxi;usi ;�); (12)
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where u(S)i = (u1i ; :::; u
S
i ) denotes S draws with marginal density g(uij�2),

and ef(�) is a subsimulator such as f(yjx;us;�1). Many possible simulators
may be used - the essential requirement is that bfi p! fi as S !1. The MSL
estimator is consistent and asymptotically equivalent to the ML estimator,
provided that S ! 1, in addition to the usual assumption that N ! 1,
with

p
N=S !1 so that S grows at rate slower than N .

The MSL estimator opens up the possibility of using a much wider range
of parametric models, such as richer models for unobserved heterogeneity
that may be more robust to model misspeci�cation. At the same time the
method can be computationally demanding. An early application of MSL
was by Lerman and Manski (1981), for the multinomial probit model. Then
I �N � S draws of usi are made if analytical derivatives are used, where I
is the number of iterations, and even more draws are needed if numerical
derivatives are used.

One common application of MSL is to models with unobserved hetero-
geneity, where implicitly we have treated the heterogeneity as being con-
tinuously distributed. An alternative is to treat heterogeneity as being dis-
cretely distributed, often with just two or three points of support. Such
�nite mixture or latent class models are especially popular in the duration
and count (number of health services) literatures; see Meyer (1990) and
Deb and Trivedi (2002). These models can be more easily estimated using
quasi-Newton methods or the expectation maximization algorithm.

The MSL can be extended to method of moments and generalized method
of moments estimation. In that case theory leads to a moment condition
E[m(yijxi;�)] = 0, wherem(�) is a scalar for simplicity, but there is no closed
form expression for m(y;x;�). Instead m(y;x;�) is an integral

m(yijxi;�) =
Z
h(yijxi;ui;�1)g(uij�2)dui; (13)

for some functions h(�) and g(�), where m(�) has no closed form. Letbmi = bm(yijxi;u(S)i ;�) be an simulator for m(yi;xi;�):Then the method
of simulated moments (MSM) estimator uses bmi in place of mi in GMM
estimation. A key result, due to McFadden (1989) and Pakes and Pollard
(1989), is that the MSM estimator is consistent for � as N ! 1 even
if S is very small, provided that an unbiased simulator is used, meaning
E[bmi] = mi. Furthermore small S may lead to little loss of precision. In the
special case that bm(�) is the frequency simulator, the MSM estimator has
variance (1 + (1=S)) times that of the MM estimator. The biggest loss in
e¢ ciency is that compared to the MSL estimator which requires S !1 as
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an unbiased simulator for the density does not lead to an unbiased simulator
for the log density and its derivative.

There are several subtleties in use of MSL and related estimators. Book
references are Gourieroux and Monfort (1996), who also discuss indirect in-
ference, and Train (2003) who focuses on applications to multinomial choice.
First, because the simulated likelihood is usually maximized by iterative
gradient methods, the simulator bfi should be di¤erentiable (or smooth) in
�. For example, for limited dependent variables models with normal errors
the GHK simulator is often used. Second, to enable convergence and avoid
�chatter�the same underlying random numbers used to obtain uSi should be
used at each iteration. Third, the draws from g(uij�2) need not be indepen-
dent. For example, better approximation for given S may be obtained by
using dependent quasi-random numbers, such as Halton sequences, rather
than independent pseudo-random numbers, and by use of antithetic sam-
pling. Fourth it may be di¢ cult to make draws from uSi using standard
methods such as inverse transformation and accept-reject methods. Then
newer Markov chain Monte Carlo methods, widely used in Bayesian analysis,
may be used.

3.4 Simulation-Based Bayesian Analysis

Let L (yjX;�) = f(yjX;�) denote the sample joint density or likelihood,
and �(�) denote the prior distribution. Then the posterior density for � is

p(�jy;X) = L(yjX;�)�(�)
f(yjX) ; (14)

where f(yjX) =
R
R(�) L(yjX;�)�(�)d� and R (�) denotes the support of

�(�). Because the denominator f(yjX) is free of �, we can more simply
write

p(�jy) _ L(yj�)�(�); (15)

where for notational simplicity we suppress the regressors X. The posterior
is proportional to the product of the likelihood and prior.

The heart of Bayesian analysis is the posterior p(�jy). In the simplest
cases a closed form expression for this exists. For example, if y is normal
with mean X� and known variance and the prior for � is the normal with
speci�ed mean and variance, then the posterior is normal.

But for most models, especially standard nonlinear regression models,
the posterior is unknown. One approach is to then obtain key moments, such
as the posterior mean E[�] =

R
�p(�jy)d� using Monte Carlo integration
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methods that do not require draws from p(�jy). In particular importance
sampling methods can be used; see Kloek and van Dijk (1978) and Geweke
(1989).

The more modern approach is to instead to obtain many draws, sayb�1; :::; b�S from p(�jy). Then the posterior mean can then be estimated by
S�1

PS
s=1
b�s, and other quantities of interest, such as the distribution of

marginal e¤ects in a nonlinear model, can be similarly computed. The key
ingredient is the recent development of methods to obtain draws of � from
the posterior p(�jy) even when p(�jy) is unknown, see Gel�and and Smith
(1990).

The starting point is the Gibbs sampler. Let � = [�01 �
0
2]
0 and suppose

that it is possible to draw from the conditional posteriors p(�1j�2;y) and
p(�2j�1;y), even though it is not possible to draw from p(�jy). The Gibbs
sampler obtains draws from p(�jy) by making alternating draws from each
conditional distribution. Thus given an initial value �(0)2 , we obtain �

(1)
1

by drawing from p(�1j�(0)2 ;y), then �
(1)
2 by drawing from p(�2j�(1)1 ;y), then

�
(2)
1 by drawing from p(�1j�(1)2 ;y), and so on. When repeated many times it
can be shown that this process ultimately leads to draws of � from p(�jy),
even though in general p(�jy) 6= p(�1j�2;y) � p(�2j�1;y). The sampler is
an example of a Markov chain Monte Carlo method. The term Markov
chain is used because the procedure sets up a Markov chain for � whose
stationary distribution can be shown to be the desired posterior p(�jy).
The method extends immediately to more partitions for �. For example, if
� = [�01 �

0
2 �

0
3]
0 then we need to be able to make draws from p(�1j�2;�3;y)

and p(�2j�1;�3;y), and p(�3j�1;�2;y).
In many applications some of the conditional posteriors are unknown, in

which case MCMC methods other than the Gibbs sampler need to be used.
A standard method is the Metropolis-Hastings algorithm which uses a trial
or jumping distribution. The Gibbs sampler can be shown to be an example
of a Metropolis-Hastings algorithm, one with relatively fast convergence.

The MCMC methods in principle permit Bayesian analysis to be applied
to a very wide range of models. In practice, there is an art to ensuring that
the chain converges in a reasonable amount of computational time. The
�rst B draws of � are discarded, where B is chosen to be large enough
that the Markov chain has converged. The remaining S draws of � are
then used. Various diagnostic methods exist to indicate convergence though
these do not guarantee convergence. MCMC methods yield correlated draws
from p(�jy), rather than independent draws, but this correlation only e¤ects
the precision of posterior analysis and often the correlation is low. Many
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Bayesian models include both components with closed from solutions for the
posterior and components that require use of MCMC methods �the Gibbs
sampler, if possible, and failing that the MH algorithm with hopefully good
choice of jumping distribution.

Bayesian methods are particularly attractive in models entailing latent
variables, such as Tobit models, see Chib (1992, 2001), and multinomial
probit models, see McCulloch, Polson, and Rossi (2000). Then data aug-
mentation, see Tanner and Wong (1987), is used. A recent application is
that by Geweke, Gowrisankaran, and Town (2003). Recent econometrics
books are Koop (2003), Lancaster (2004), and Koop, Poirier, and Tobias
(2007).

Bayesian inference is quite di¤erent from frequentist inference, and the
di¤erence has provoked strong philosophical debates. Frequentists when
confronted by numerically challenging likelihood functions can obtain ML
estimates of � by using the preceding Bayesian MCMC methods with a
di¤use prior for � speci�ed, in which case the sample information dominates,
and then proceed to use frequentist inferential methods. Whether the new
Bayesian numerical methods will lead to greater use of Bayesian inferential
methods is an open question.

3.5 Quantile Regression

In the iid case quantiles, such as deciles and quartiles, are often used to sum-
marize the distribution of income, earnings and wealth. Quantile regression
is an extension to the regression case where, for example interest may lie in
di¤erent response of earnings to education at di¤erent levels of earnings.

The least squares estimator maximizes the sum of squared residuals, but
alternative functions of the residuals can be considered. In particular, the
least absolute deviations (LAD) estimator minimizes the sum of absolute
residuals

PN
i=1 jyi � x0i�j. In the iid case, with x0i� = �, the resulting

estimate of � is the sample median.
More generally we can consider estimation of quantiles other than the

median. The qth quantile regression estimator b�q minimizes over �q
QN (�q) =

NX
i:yi�x0i�

qjyi � x0i�qj+
NX

i:yi<x0i�

(1� q)jyi � x0i�qj;

where we use �q rather than � to make clear that di¤erent choices of q
estimate di¤erent values of �. The special case q = 0:5 is the LAD esti-
mator. The objective function is not di¤erentiable, so linear programming
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methods are used rather than more familiar gradient methods. These en-
able relatively fast computation of b�q. The quantile regression estimator
is consistent and asymptotically normal, but estimation of the variance ofb�q requires estimation of fuq(0jx), the conditional density of the error term
uq = y � x0�q evaluated at uq = 0. An easier method is to instead obtain
bootstrap standard errors for b�q using a paired bootstrap.

Quantile regression was proposed by Koenker and Bassett (1978). Powell
(1984, 1986) adapted the method to permit consistent estimation in censored
linear regression models without speci�cation of the distribution of the er-
rors. Buchinsky (1994) provided a much-cited application. Chernozhukov
and Hansen (2005) propose a LAD IV estimator. Angrist, Chernozhukov
and Ferandez-Val (2006) provide interpretation of the quantile regression
when the quantile function is misspeci�ed. Koenker and Hallock (2001) and
Koenker (2005) provide summaries of the quantile literature.

3.6 Nonparametric and Semiparametric Methods

Consider the regression model

E[yijxi] = m(xi); (16)

where the function m(x) is unspeci�ed. Nonparametric regression provides
a consistent estimate of m(x). At the speci�c point x = x0, m(x0) can be
estimated by taking a local weighted average of yi over those observations
with xi in a neighborhood of x0. There are many variations on this approach,
including kernel regression, nearest neighbors regression, local linear, local
polynomial, Lowess, smoothing spline and series estimators. Because a local
average is taken less than N observations are e¤ectively used at any point
x0, so bm(x0) p! m(x0) at rate less than the usual N�1=2.

Fully nonparametric regression works best in practice when there is just
a single regressor. Even then, empirical results vary greatly with the choice
of bandwidth or window width that de�nes the size of the neighborhood.
Unlike kernel density estimation, �plug-in�estimates of the bandwidth work
very poorly. Cross-validation is commonly-used to select the bandwidth, but
this method is by no means perfect.

There is no theoretical obstacle to using nonparametric regression when
there are many regressors. But in practice nonparametric methods usually
work poorly with more than very few regressors. The optimal convergence
rate using mean-squared error as a criterion is N�2=(dim[x]+4). As dim[x] in-
creases the convergence rate deceases, a curse of dimensionality that arises
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because the local averages will be made over fewer observations. For exam-
ple, if we averaged over 10 bins with one regressor we may wish to average
over 102 = 100 bins when there are two regressors. This problem is less
severe when some regressors take only a few values, such as binary indicator
variables. Racine and Li (2004) present results for kernel regression when
some regressors are discrete and some are continuous.

The microeconometrics literature focuses on semiparametric methods
that overcome the curse of dimensionality by partially parameterizing a
model, so that there is a mix of parametric and nonparametric components.
The maximum score estimator for the binary choice model of Manski (1975)
is a very early example. A �rst step is to determine whether a model is
identi�ed. Ideally

p
N -consistent and asymptotically normal estimates of

the parameters can be obtained. These should be fully e¢ cient in that they
attain semi-parametric e¢ ciency bounds, see Chamberlain (1987), Newey
(1990), and Severini and Tripathi (2001), that are extensions of Cramer-
Rao lower bounds or the Gauss-Markov theorem.

There are many semiparametric models, and for each model there can be
several di¤erent ways to obtain estimators. We present two commonly-used
semiparametric models in econometrics that are also the building blocks
towards more general models.

The partial linear model speci�es the conditional mean to be the usual
linear regression function plus an unspeci�ed nonlinear component, so

E[yijxi; zi] = x0i� + �(zi); (17)

where the scalar function �(�) is unspeci�ed. An example is the estimation
of a demand function for electricity, where z re�ects time-of-day or weather
indicators such as temperature. A second example is a sample selection
model where �(z) is the expected value of a model error, conditional on the
sample selection rule. In applications interest may lie in �, �(z) or both.

Various estimators for the partial linear model have been proposed. The
di¤erencing method proposed by Robinson (1988) estimates � by OLS re-
gression of (yi � bmyi) on (xi � bmxi), where bmyi and bmxi are predictions
from nonparametric regression of, respectively, y and x on z. Robinson
used kernel estimates that may need to be oversmoothed. Other methods
that additionally estimate �(z), at least for scalar z, include a generalization
of the cubic smoothing spline estimator, and using a series approximation
for �(z).

The single-index model speci�es the conditional mean to be an unknown
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scalar function of a linear combination of the regressors, with

E[yijxi] = g(x0i�); (18)

where the scalar function g(�) is unspeci�ed and the parameters � are then
only identi�ed up to location and scale. An example is a binary choice model
with Pr[y = 1jx] = g(x0�) where g(�) is unknown. The single-index formu-
lation is attractive as the marginal e¤ect of a change in the jth regressor
is g0(x0i�)�j , so that the ratio of parameter estimates equals the ratio of
marginal e¤ects.

Estimators for the single-index model include an average derivative es-
timator, a density weighted average derivative estimator, see Powell, Stock
and Stoker (1989), and semiparametric least squares.

Microeconometricians have focused on semiparametric estimation for
limited dependent variable models - binary choice with unspeci�ed function
for the probabilities, censored regression and sample selection. The litera-
ture is vast. References include the book by Pagan and Ullah (1999) and
the applied study by Bellemare, Melenberg and Van Soest (2002). Nonpara-
metric and semiparametric methods are also used in the treatment e¤ects
literature detailed in Section 5.1.

4 Statistical Inference

Robust statistical inference, presented in Section 4.1, presents Wald tests
based on robust standard errors that rely on distributional assumptions
that are as weak as possible. Other developments in hypothesis testing and
model speci�cation testing are presented in Section 4.2. These methods rely
on asymptotic results that provide only an approximation in typical �nite
sample sizes. The bootstrap, detailed in Section 4.3, provides an alternative
way to compute asymptotic approximations. Furthermore it can in some
cases additionally provide a more accurate asymptotic approximation.

4.1 Robust Inference for Wald Tests

We begin with the cross-section case of independent observations, before
moving to clustered observations which includes short panels.

Consider an m-estimator b� that maximizes with respect to � the objec-
tive function QN (�) = N�1P

i q(yi;xi;�). For maximum likelihood estima-
tion q(�) is the log-density, and for least squares estimation q (�) is minus the
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squared error (or a rescaling of this). The m-estimator solves the �rst-order
conditions

N�1
X

i
hi(�) = 0, (19)

where hi(�) = @q(yi;xi;�)=@�. Under suitable assumptions, notably that
E[hi(�)] = 0 in the population, it can be shown that b� is pN�consistent,
with limit distribution

p
N(b� � �0) d! N [0;A�10 B0A

0�1
0 ]; (20)

whereA0 = plimN�1P
i @hi(�)=@�

0��
�0
, andB0 = plimN�1P

i hi(�0)hi(�0)
0,

and �0 is the value of � in the data generating process (dgp).
In practice we base inference on b� being asymptotically normally distrib-

uted with mean �0 and estimated asymptotic variance matrix of sandwich
form bV[b�] = N�1 bA�1 bBbA0�1; (21)

where bA and bB are consistent estimates of A0 and B0. The Wald test
statistic for H0 : �j = r is then W = (b�j � r)=sj where sj is the jth diagonal
entry of bV[b�] and W a� N [01] under H0. More generally to test H0 : h(�) =
0 we use W = h(b�)0(bR0bV[b�]bR)�1h(b�) where bR = @h(�)=@�jb� and W a�
�2(rank[R]) under H0.

There are several possible ways to form bA and bB, depending in part on
the strength of distributional assumptions made. Robust variance estimates
are those that rely on minimal distributional assumptions, providedN !1.

Given data independent over i, the robust variance matrix estimate uses

bA = N�1
X

i

@hi(�)

@�0

����b� ; (22)

bB = N�1
X

i
hi(b�)hi(b�)0:

The resulting standard errors are called robust standard errors. In some
cases the Hessian bA in (22) may be replaced by the expected Hessian, andbB may use a degrees-of- freedom correction such as (N � q)�1 rather than
N�1.

A leading example is the heteroskedastic-consistent estimate of the variance-
covariance matrix of the ordinary least squares (OLS) estimator. Then
qi(�) = �1

2(yi � x
0
i�)

2, where the multiple 1
2 is added for convenience, so

that hi(�) = @qi=@� = (yi � x0i�)xi, and @hi(�)=@�0 = �xix0i. It follows
that bV[b�OLS] = hXi

xix
0
i

i�1 hX
i
bu2ixix0ii hXi

xix
0
i

i�1
; (23)
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where bui = (yi � x0ib�).
For ML estimation use of (22) relaxes the traditional information ma-

trix equality assumption that A0 = �B0, which gives the simpli�cation
A�10 B0A

�1
0 = �A�10 . Failure of the information matrix equality, however,

will generally imply inconsistency of the MLE. (A notable exception is mod-
els such as Poisson and logit and probit with speci�ed density in the linear
exponential family and correctly speci�ed conditional mean function). In
that case �0 needs to be reinterpreted as a �pseudo-true value�, which is
the value of � that maximizes the probability limit of 1=N times the log-
likelihood function.

The estimates in (22) can be extended to clustered data. In that case
observations are grouped into clusters, with correlation permitted within
cluster but independence assumed across clusters. An example is panel data
where the cluster unit is the individual, observations for a given individual
over time are correlated, but observations across individuals are indepen-
dent. Failure to control for clustering can lead to greatly under-estimated
standard errors. Let c = 1; :::; C denote clusters and let j = 1; :::; Nc denote
the Nc observations in cluster c: Then the cluster-robust variance matrix
estimate is (21) where bA is again given in (22) but now

bB = N�1
XC

c=1

XNc

j=1

XNc

k=1
hjc(b�)hkc(b�)0: (24)

This estimator permits both error heteroskedasticity and quite �exible error
correlation within cluster. It has largely supplanted use of a more restrictive
random e¤ects or error components model, though it does require C !1.

The theory for robust inference is well-established and, in the indepen-
dent observations case at least, is well incorporated into microeconometrics
practice. In particular, for LS problems it is standard to estimate by OLS
and then use robust standard errors, even though there may be e¢ ciency loss
compared to doing feasible GLS. Note, however, that one can still employ
feasible GLS but then compute robust standard errors that guard against
misspeci�cation of the model for the error variance matrix.

For independent errors the key early reference is White (1980) who pro-
posed the special case (23). Robust standard errors have been applied to
many estimators, including instrumental variables and generalized method
of moments (see (3) and Newey and West, 1987a). Amemiya (1985) and
Newey and McFadden (1994) provide quite general treatments of inference
and estimation; see also White (1984, 200?). For clustered errors various
references are given by Cameron, Gelbach and Miller (2006a, 2006b) who
consider, respectively, �nite-sample corrections when there are few clusters
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and extensions to multi-way clustering.

4.2 Hypothesis Tests and Model Speci�cation Tests

For hypotheses on parameters of the form

H0 : h(�) = 0

Ha : h(�) 6= 0;

the classical tests in the likelihood framework are Wald, Lagrange multiplier
(or score) tests, and the likelihood ratio test. For correctly speci�ed likeli-
hood function these tests are �rst-order asymptotically equivalent under the
null hypothesis and under local alternatives, so choice between them is one
of convenience.

More recent work has focused on �nite-sample properties of the tests
and generalization to the non-likelihood framework.

The Wald test has become the most popular of these three tests, as it
generalizes easily to non-likelihood models and is most easily robusti�ed as
detailed in Section 4.1. But it does have the limitation of lack of invariance
to parameterization. For example, a test of H0 : �1=�2 = 1 will lead in
�nite samples to Wald test statistic that di¤ers from that for the equivalent
hypothesis H0 : �1��2. A bootstrap with asymptotic re�nement, see section
4.3, should reduce this invariance.

The Lagrange multiplier or score test is less commonly-used in part be-
cause the usual method to compute these, by use of an auxiliary regression,
has poor �nite sample properties. Speci�cally, Monte Carlo studies �nd
considerable over-rejection due to �nite sample test size being considerably
larger than the asymptotic size. A bootstrap with asymptotic re�nement,
however, can correct this problem. The LM test can be extended to non-
likelihood settings, and can be robusti�ed.

The likelihood ratio test generally does not extend to non-likelihood
settings, though it does for optimal GMM estimation. Newey and West
(1987b) generalize the three classical tests from the likelihood framework to
the GMM framework.

The preceding hypothesis testing methods can also be used for model se-
lection when models are nested. For model selection with nonnested models
there is an extensive literature that we do not address here. A recent survey
is provided by Pesaran and Weeks (2001).

In the remainder of this subsection we consider various model speci�ca-
tion tests that do not rely on hypothesis tests of the form H0 : h(�) = 0.
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The Hausman (1978) test contrasts two estimators that may be the same
under a null hypothesis and di¤er under an alternative hypothesis. For
example, one can compare OLS to the 2SLS estimator and conclude that
there is endogeneity if the two estimators di¤er. Denote the two estimators
by b� and e�, in which case we test H0 : plim(b� � e�) = 0 using the statistic

H = (b� � e�)0(bV[b� � e�])�1[b� � e�];
which is chisquared distributed under H0. Implementation requires esti-
mating the variance matrix of the di¤erence in the estimators. The original
approach was to assume that one estimator, say b� is e¢ cient under the
null, in which case V[b� � e�] = V[e�]� V[b�]. This is the standard method
used today, even though it is generally incorrect since from Section 4.1 most
applied studies use heteroskedastic-robust or cluster-robust standard errors
that presume the estimator is in fact ine¢ cient. One should instead use
alternative methods to estimate V[b� � e�], such as the bootstrap.

Moment tests are tests of whether or not a population moment condition
is supported by the data. So we test

H0 : E[m(wi;�)] = 0

Ha : E[m(wi;�)] 6= 0:

An obvious test is based on whether the corresponding sample momentbm = N�1P
im(wi;

b�) is close to zero. The test statistic is
M = bm0(bV[ bm])�1 bm;

whereM is chi-squared distributed underH0 and the challenge is to estimatebV[ bm].
One leading example is an overidentifying restrictions (OIR) test. Then

GMM estimation based on E[m(wi;�)] = 0 cannot exactly impose bm = 0 if
the model is overidenti�ed. If GMM with optimal weighting matrix is used
then Hansen (1982) showed thatM is chisquared distributed under H0 with
degrees of freedom equal to the number of over-identifying restrictions.

A second class of examples are conditional moment tests where some
model restrictions are used in estimation while other restrictions, not im-
posed in estimation, are used for speci�cation testing. For example, in
linear regression of y on x1 the hypothesis that x2 can be excluded as a
regressor implies E[(y � x01�1)jx2] = 0 which can speci�ed as a test of H0 :
E[(y � x01�1)x2] = 0. Here it can be di¢ cult to obtain bV[ bm], though
auxiliary regressions are available to compute an asymptotically equivalent
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version of M in the special case that b� is the MLE. Examples of condi-
tional moment tests include the information matrix test of White (1982)
and chisquared goodness-of-�t tests.

The Hausman test and OIR tests are routinely used in GMM applica-
tions. Conditional moment tests are less commonly used, even though they
are easy to implement in likelihood settings and would seem especially useful
then due to concerns of reliance on distributional assumptions. One reason
is that the convenient auxiliary regressions used to compute then can have
poor �nite-sample size properties, but this can be recti�ed by a bootstrap
with asymptotic re�nement; see, for example, Horowitz (1996). A second
reason is the more practical one that, especially with large samples, any
model is quite likely to be rejected at conventional �ve percent signi�cance
levels.

4.3 Bootstrap

Inference in microeconometrics is based on asymptotic results that provide
only an approximation given typical sample sizes. The bootstrap, introduced
by Efron (1979), provides an alternative approximation by Monte Carlo
simulation.

The motivation of the bootstrap is to view the data in hand or the �tted
dgp as the population, draw B resamples from this population, and for each
resample compute a relevant statistic. The empirical distribution of the
resulting B statistics is used to approximate the distribution of the original
statistic.

The most common use of the bootstrap is as a way to calculate stan-
dard errors. The data w1; :::;wN are assumed to be iid distributed. The
bootstrap standard error procedure is

1. Do the following B times:

� Draw a bootstrap resample w�1; :::;w�N by sampling with replace-
ment from the original data (called a paired bootstrap).

� Obtain estimate b�� of �, where for simplicity � is scalar.
2. Use the B estimates b��1; :::;b��B to approximate the distribution of b�. In
particular, the bootstrap estimate of the standard error of b� is

sb�;Boot =
r

1

B � 1
XB

b=1
(b��b � b��)2; (25)
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where b�� = B�1
PB
b=1
b��b . This is simply the standard deviation ofb��1; :::;b��B.

This method is convenient whenever standard errors are di¢ cult to ob-
tain by conventional methods. Leading examples are (1) two-step estimators
when estimation at the �rst step complicates inference at the second step;
(2) Hausman tests that require computation of the variance of the di¤er-
ence between two estimators when neither estimator is e¢ cient under the
null hypothesis; and (3) estimation with clustered errors when a package
does not compute cluster-robust standard errors (in this case a cluster boot-
strap that resamples over clusters is used). Given bootstrap standard errors,
a standard Wald test of H0 : � = �0 uses t = (b���0)=sb�;Boot and asymptotic
normal critical values.

The preceding bootstrap is theoretically no better than usual �rst-order
asymptotic theory. The attraction is the practical one of convenience.

Some bootstraps, however, provide a better asymptotic approximation,
called an asymptotic re�nement. The econometrics literature focuses on
asymptotic re�nement for test statistics. Consider a test of H0 : � = �0 with
nominal signi�cance level or nominal size �. An asymptotic approximation
yields an actual rejection rate or true size � + O(N�j), where O(N�j)
means is of order N�j and j > 0 with often j = 1=2 or j = 1. Then
the true size goes to � as N ! 1. Larger j is preferred, however, as
then convergence to � is faster. A method with asymptotic re�nement (or
higher-order asymptotics) is one that yields j larger than that obtained using
conventional asymptotics. The hope is that such asymptotic re�nement will
lead to tests with true size closer to � for moderate sample sizes, though this
is not guaranteed. Asymptotic re�nement may be possible if the bootstrap is
applied to an asymptotically pivotal statistic, meaning one with asymptotic
distribution that does not depend on unknown parameters.

The bootstrap standard error procedure does not lead to asymptotic
re�nement for the Wald test. Nor does the percentile method which rejects
H0 : � = �0 if �0 falls outside the lower �=2 and upper �=2 quantiles of
the bootstrap estimates b��1; :::;b��B. The problem is that the bootstrap is ofb� which is not asymptotically pivotal, since even under H0 its asymptotic
normal distribution depends on an unknown parameter (the variance).

Instead, the Wald statistic itself should be bootstrapped, as t = (b� �
�0)=sb� is asymptotically pivotal, since it is asymptotically N [0; 1] under H0.
The bootstrap-t or percentile-t procedure for a two-sided test of H0 : � = �0
at level � is
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1. Do the following B times:

� Draw a bootstrap resample w�1; :::;w�N by sampling with replace-
ment from the original data (called a paired bootstrap).

� Obtain estimate b��, standard error sb�� and t-statistic t� = (b�� �b�)=sb�� .
2. Use the B statistics t�1; :::; t

�
B to approximate the distribution of t =

(b� � �0)=sb�. For an equal-tailed (or nonsymmetrical) test reject H0 if
the original sample t-statistic falls outside the lower �=2 and upper �=2
quantiles of the bootstrap estimates t�1; :::; t

�
B. For a symmetrical test

reject H0 if the original sample t-statistic falls outside the � quantile
of jt�1j; :::; jt�Bj.

Note that t� in step 1 is centered on b� as the bootstrap views the original
sample, with � = b�, as the dgp. For equal-tailed two-sided tests (or for one-
sided tests) this procedure leads to asymptotic re�nement with true size
�+O(N�1), rather than �+O(N�0:5) using bootstrap standard errors (or
standard errors obtained using equation (21). For a two-sided symmetrical
test (or a chisquared test) the corresponding rates are instead, respectively,
�+O(N�1=2) and �+O(N�1).

There are many ways to bootstrap as there are di¤erent ways to obtain
resamples, and there are many ways to use these resamples.

The resampling method used above is called a paired bootstrap as often
wi = (yi;xi) and here both yi and xi are being resampled. By contrast
a residual bootstrap, for a model with additive error, holds xi �xed and
resamples over residuals bu1; :::; buN to yield resampled values w�i = (y�i ;xi)

where y�i = x
0
i
b�+bu�i . A parametric bootstrap uses distributional knowledge,

such as a speci�ed distribution for yijxi to resample. For hypothesis tests it
is best, if possible, to impose H0 in drawing the bootstrap sample.

Much development of the bootstrap has been done in the statistics lit-
erature. The econometrics literature is surveyed in Horowitz (2001), and
MacKinnon (2002) provides much useful practical advice. Econometrics
studies have focused on bootstraps for estimation methods used mainly by
econometricians. For over-identi�ed GMM models one should recenter so
that the population moment condition is imposed in the sample. For non-
smooth estimators and less than

p
N -consistent estimators standard boot-

strap methods may provide inconsistent standard error estimates, leading
to a currently active literature. Abrevaya and Huang (2005) consider the
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maximum score estimator, Abadie and Imbens (2006b) consider matching
treatment e¤ects estimators, and Moreira, Porter, and Suarez (2004) con-
sider IV with weak instruments. Subsampling, due to Politis and Romano
(1994), works in a wider range of settings than the bootstrap.

In applied microeconometrics the main use of the bootstrap is to obtain
standard errors. Bootstraps with asymptotic re�nement are rarely done, as
sample sizes are felt to be fairly large. But a bootstrap with asymptotic
re�nement can correct for many well-documented problems associated with
standard tests, including the lack of invariance to parameterization for the
Wald test and the poor �nite-sample performance of auxiliary regressions
used in computing Lagrange multiplier tests and conditional moment tests.
And, in application with clustered observations, if there are few clusters
there may be bene�ts to using a cluster bootstrap with asymptotic re�ne-
ment.

5 Causation

The preceding sections present estimation and inference methods that can
be used in a wide range of settings. Now we specialize to methods that can
provide estimates of a causative e¤ect, meaning measures of how an outcome
changes in response to exogenous changes in a regressor. The �treatment
e¤ects�or �natural experiment�approach that extends randomized exper-
iment methods to observational data, is presented in some detail Section
5.1. This major innovation in microeconometrics research uses a potential
outcomes notation that di¤ers from the simultaneous equations framework
developed at the Cowles Commission. Developments in other more tradi-
tional methods to tease out causation, notably instrumental variables, panel
data, and structural models, are presented in Sections 5.2 to 5.4. The �nal
section presents partial identi�cation which provides set identi�cation (or
bounds) under weaker assumptions than those necessary for point identi�-
cation. The approach has much wider applicability than to causation, and
is especially applicable to missing data problems.

5.1 Treatment E¤ects

We consider estimating the causal e¤ect of a binary regressor. A stereotyp-
ical example is to consider the impact of a training program on earnings.
The terminology of a medical trial is used. Then enrollment in a training
program is viewed as treatment, having no training is viewed as control, and
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we wish to estimate the causative e¤ect of the treatment on the outcome
variable earnings.

The ideal way to calculate this e¤ect is to observe earnings for a person
with the training, observe earnings for the same person without training,
and subtract. But this is impossible. Instead we observe the outcome in
only one state, while the other state is a hypothetical unobserved value,
called a potential outcome or counterfactual.

The randomized experiment approach solves the inability to observe the
counterfactual by comparing average outcomes, rather than individual out-
comes, for two groups that are randomly assigned to either treatment or
control. This approach is used at times in the social sciences, in social ex-
periments. But most economics studies must instead rely on observational
data.

The treatment e¤ects literature seeks to extend the experimental ap-
proach to nonrandomized settings. Again averages across groups are com-
pared, but now individuals select their treatment. Di¤erent assumptions
about the nature of the self-selection of treatment and data availability lead
to di¤erent methods to compute average e¤ects of treatment.

The following framework is used. We consider a binary treatment, with
variable d that takes value 1 if treatment is assigned and value 0 if untreated
(a control). The observed outcome of interest y is a continuous variable that
then takes value

yi =

�
y1i if treated (di = 1)
y0i if control (di = 0):

(26)

The individual treatment e¤ect is

�i = (y1i � y0i): (27)

Note that (26) and (27) imply

yi = diy1i + (1� di)y0i = y0i + �idi: (28)

Since only one of y1i and y0i are observed, �i is not observable. Instead
we try to estimate population averages of �i, notably the average treatment
e¤ect (ATE)

�ATE = E[�i]; (29)

and the average treatment e¤ect on the treated (ATET)

�ATET = E[�ijdi = 1]. (30)

These are conceptually quite di¤erent quantities. ATET gives the average
gain in earnings for a person who actually receives training. ATE gives the
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earnings gain averaged across those who did and those who did not receive
the training.

The evaluation problem can be illustrated by decomposing ATET into
two terms as

�ATET = fE[y1ijdi = 1]� E[y0ijdi = 0]g � fE[y0ijdi = 1]� E[y0ijdi = 0]g:
(31)

A naive estimate of �ATET uses just the �rst term. But this ignores the
second term, a selection term that arises if the treated and untreated are
di¤erent in that on average they would have di¤erent untreated outcome.
Methods di¤er according to whether this selection term can be solely con-
trolled for by regressors, or whether it additionally depends on unobserv-
ables.

Given regressors x, similar average e¤ects can be de�ned, now varying
with regressors. The average treatment e¤ect is

�ATE(x) = E[�ijXi = x] : (32)

and the average treatment e¤ect on the treated

�ATET(x) = E[�ijXi = x; di = 1] : (33)

Treatment e¤ects are called heterogeneous if these quantities vary with the
evaluation point x, and are called homogeneous if �ATE(x) = �ATET(x) =
�. In practice results usually report estimates of the population measures
�ATE= E[�ATE(x)] and �ATET= E[�ATET(x)] that average across individ-
uals with di¤erent characteristics. For example, given individual-level esti-
mates of b�ATE(xi) we can form b�ATE = N�1PN

i=1 b�ATE(xi).
We begin by assuming that selection is on observables only. Formally

we make the conditional independence assumption that, conditional on re-
gressors, outcomes are independent of treatment, so that

f(yjijxi; di = 1) = f(yjijxi; di = 0) = f(yjijxi), j = 0; 1: (34)

This assumption of exogenous selection of treatment (given x) is often writ-
ten as y0i; y1i ? di j xi and has several other names including unconfounded-
ness and ignorability. For some purposes it can be weakened to apply to only
y0i or to apply only to conditional means (and not the entire distribution).
The assumption implies that

�ATET(x) = E[y1ijXi = x; di = 1]� E[y0ijXi = x; di = 0]; (35)
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where the second term conditions on di = 0, rather than di = 1 as in the
original de�nition (33).

The �rst method for estimating treatment e¤ects is based on (35) and
compares sample averages of y1 and y0 for individuals with the same level of
x. Thismatching approach permits treatment e¤ects to be heterogeneous
and provides nonparametric estimates of their average. In practice, however,
such estimates become noisy or impossible as x will take many values if
it is continuous or high-dimensional. One can instead use nonparametric
methods such as kernel weighting that permit use of individuals with similar
but not exactly the same level of x. But more common is to match on the
probability of treatment conditional on x, or propensity score,

p(xi) = Pr[di = 1jxi]; (36)

since Rosenbaum and Rubin (1983) showed that the conditional indepen-
dence assumption carried over to conditioning on the propensity score (i.e.,
y0i; y1i ? di j p(xi)). For example, nearest-neighbor propensity score match-
ing uses b�ATET = N�1

1

X
i:di=1

(y1i � y0j);

where N1 =
PN
i=1 di and y0j is the outcome for the nearest neighbor, the

untreated observation with propensity score closest to that for y1i. Other
propensity score matching methods included kernel and strati�cation meth-
ods. The propensity score should be estimated using a �exible model such
as a semiparametric binary model or a logit model with interactions. The
propensity scores must have suitable common support over treatment and
controls in order for matching to be feasible. For ATET we need p(xi) < 1,
i.e. for any value of the regressors it is possible to not receive treatment,
and for ATE we need 0 < p(xi) < 1.

A second method is to specify and estimate a more restrictive regression
model for the outcome. An obvious model is

yi = �di + x
0
i� + ui; (37)

which imposes the constraint that the treatment e¤ect � is homogeneous.
OLS estimation of (37) yields a consistent estimate of the treatment e¤ect �,
assuming conditional independence and that (37) is correctly speci�ed. This
is called the control function approach, as the regressors x here include
regressors that control for selection into treatment (i.e., explain d) as well
as regressors that directly explain y in the absence of treatment. This more
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parametric method has the advantage over matching of not requiring com-
mon support for the propensity score and permitting extrapolation beyond
just the sample at hand.

The preceding two methods rely on the untestable assumption of condi-
tional independence to be valid and presume that the data set is rich with
many control variables, since observables alone are assumed su¢ cient to
control for treatment selection. Should these conditions fail, which will be
the case in many potential applications, the previous methods are invalid.
For example, the OLS estimator in the simple homogeneous e¤ects model
(37) is inconsistent if the treatment indicator variable is correlated with the
error term even after conditioning on regressors x. Note also that even if
treatment e¤ects are heterogeneous and matching is valid, the estimates ob-
tained are very problem speci�c and not necessarily generalizable to other
settings.

A third method is to use panel data �xed e¤ects estimators to control
for unobserved heterogeneity. A panel data version of the homogeneous
e¤ects model (37) is

yit = �dit + x
0
it� + �i + �t + "it; (38)

where here xit does not include a constant and the intercept has both an
individual-speci�c component �i and a time-speci�c component �t. We as-
sume that treatment dit is correlated with the unobservable �i, leading to
inconsistency of OLS, but is uncorrelated with uit. Then � can be consis-
tently estimated by OLS estimation of the �rst-di¤erences model

�yit = ��dit +��t +�x
0
it� +�"it; (39)

or by estimation of a mean-di¤erences model (the �xed e¤ect estimator),
since �i has been eliminated. This standard method presumes panel data
are available and is restricted to homogeneous treatment e¤ects.

A fourth method, di¤erences in di¤erences, is applicable to repeated
cross-sections, as well as panel data. We suppose there are just two periods,
say t = a (after) and t = b (before), that all individuals are untreated in
the �rst period and some are treated in the second period. Let �yjt denote
the average outcome for treatment group j = 0; 1 in period t = a; b. The
outcome changes over time by (�y1a� �y1b) in the treated group and by (�y0a�
�y0b) in the untreated group. The di¤erences in these di¤erences provides
an estimate of ATET, called the di¤erences-in-di¤erences estimator. This
estimator is the OLS estimate of � in the model

yit =  + �di + �et + uit; t = a; b;
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where di = 1 is a binary treatment indicator and et is a binary time period
indicator. Consistency of this estimator requires strong assumptions regard-
ing the role of unobservables. In terms of (38) it is assumed that treatment
selection does not depend on "it and that while it may depend on �i, on
average plim(��ja � ��jb) = 0. The method can be extended to estimate het-
erogeneous e¤ects �ATET(x) by grouping on x and then calculating within
each group the four relevant averages of y.

A �fth method explicitly models the distribution of unobservables us-
ing sample selection models. These introduce a latent variable to explain
treatment choice where the latent variable includes an unobserved compo-
nent (or error) that is correlated with the error in the outcome equation. A
linear model that permits heterogeneous e¤ects and selection on unobserv-
ables is

y1i = x0i�1 + u1i (40)

y0i = x0i�0 + u0i

d�i = z0i + vi;

where di = 1 if the latent variable d�i > 0, and di = 0 otherwise. A homo-
geneous e¤ects version restricts y1i = y0i aside from a di¤erence of � in the
intercept. Under the assumption that (u0i; u1i; vi) are joint normal (with
�2v = 1), some algebra yields

E[y1ijx;d� > 0] = x0i�1 + �1v�(z
0
i); (41)

E[y0ijx;d� � 0] = x0i�0 � �0v�(�z0i);

where �(z0) = �(z0)=�(z0) is an inverse Mills ratio term and �jv =
Cov[uji; vi]. From (41) consistent estimates of �1 and �1v can be obtained
by OLS estimation for the treated sample of y1 on x and �(z0), whereb is obtained by probit regression of d on z. And OLS regression for the
untreated sample of y0 on x and ��(�z0) gives consistent estimates of �0
and �0v. These estimates can then be used to estimate

�ATET(x; z) = x
0
i(�1 � �0) + (�0v � �1v)�(z0i):

The fundamental weakness of this sample selection approach is its reliance on
distributional assumptions. These assumptions can be modi�ed and relaxed,
but even then the assumptions are still felt to be too strong.

A sixth method is instrumental variables estimation. Returning to
the homogeneous e¤ects model (37), the problem is that the regressor d
is correlated with the error u. Assuming there is an instrument z that
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does not belong in the model (so E[ujx; z] = 0) and is correlated with the
treatment indicator d, the treatment e¤ect � can be consistently estimated
by IV regression of y on x and d with instruments x and z.

A seventh related method is estimation of the local average treatment
e¤ects (LATE). Begin with the homogeneous e¤ects model with dependence
on x dropped for simplicity, so

yi = � + �di + ui: (42)

Assume there is an instrument z with E[ujz] = 0 and de�ne p(z) = Pr[d =
1jZ = z] = E[djZ = z]. Then

E[yjz] = � + �p(z):

Evaluating at two points z and z0 and subtracting we obtain the local average
treatment e¤ect (LATE)

�LATE(z) =
E[yjz]� E[yjz0]
p(z)� p(z0) : (43)

This can be estimated by comparing averages of the outcome y and treat-
ment indicator d at two di¤erent values of the instrument z. If z is binary
then this estimate is the same as the IV estimate. The estimate can be
extended to heterogeneous e¤ects, provided p(z) is monotonic in z. Then it
di¤ers from IV and will vary with the points of evaluation z and z0. A more
general treatment e¤ect is the marginal treatment e¤ect (MTE)

�MTE(x; z) =
@E[yjx; Z]

@Pr[d = 1jx; Z]

����
Z=z

;

which gives the mean treatment e¤ect for those at the margin of choosing
treatment. ATE, ATET and LATE can be shown to be di¤erent weighted
averages of MTE.

A �nal method is regression discontinuity design. We suppose treat-
ment occurs when a variable s crosses a threshold �s, so that d = 1(s > �s),
and the outcome y also depends on s. For example, a government program
to improve school outcomes may be applied to schools in low income areas.
A method is developed to calculate a score, and schools with score below a
certain threshold receive the government program while those with higher
score do not. A complication is that school outcome will directly depend on
this score. The obvious approach is to compare y for those with s just less
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than �s to those with with s just greater than �s. But this will use only a small
fraction of the data. Instead we use b� from the least squares regression

yi = � + �di + h(si) + ui; (44)

where h(�) is a �exible function that is speci�ed (e.g. polynomial) or is
estimated by nonparametric methods. Given the discrete nature of the dis-
continuity at �s it is clear that the method can also be used when e¤ects are
heterogeneous e¤ects and will estimate ATE= E[�ijsi] under mild additional
assumptions. Another extension is to fuzzy designs where there is a discrete
jump in treatment at s = 1, but this threshold is not sharp as some individ-
uals with s < �s are treated and some with s > �s are untreated. Intuitively
if a fraction f of the population in the immediate vicinity of �s switch from
untreated to treated then ATE is estimated by f times the estimated OLS
coe¢ cient of d in (44). This adaptation is qualitatively similar to that for
LATE in (43).

The literature on treatment e¤ects is vast. Econometricians have con-
tributed to the literature on all the preceding methods, and the sample
selection, IV and LATE methods originated in econometrics. Early econo-
metrics papers, that generally did not explicitly use the current treatment
e¤ects framework, include Ashenfelter (1978), Heckman (1979), Heckman
and Robb (1985), Lalonde (1986) and Björklund and Mo¢ tt (1987). Heck-
man, Ichimura and Todd (1997) and Dehejia and Wahba (1999) emphasize
matching methods. Imbens and Angrist (1994) introduce LATE and Björk-
lund and Mo¢ tt (1987) and Heckman and Vytlacil (2000) introduce MTE.
Van der Klaauw (2002) provides a detailed presentation of RD methods.
More recent research provides distribution theory when a nonparametric
component is used and seeks to extend methods to nonlinear models, for ex-
ample Imbens and Athey (2006), and to multiple treatments. Brief surveys
include Smith (2000), Blundell and Dias (2002) and Angrist (2006), while
lengthier surveys include Heckman, Lalonde and Smith (1999) and Angrist
and Krueger (1999).

5.2 Instrumental Variables Methods

We consider the linear model

yi = x
0
i� + ui; (45)

where Cor[xi; ui] 6= 0 so that OLS is inconsistent. Assume there exists
an instrument zi such that Cor[zi; ui] = 0. The IV estimator for a just-
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identi�ed model, considered for simplicity, is

b�IV = (Z0X)�1Z0y: (46)

If Cor[zi; ui] = 0 then b�IV is asymptotically normal with mean � and
V[b�IV] = (Z0X)�1Z0�Z(X0Z)�1; (47)

where � = E[uu0jZ]. This estimator is easily extended to overidenti�ed
models, and to nonlinear models as a special case of GMM.

The applied literature has included many creative examples of instru-
ment use. For example, in earnings-schooling regression a proposed instru-
ment for schooling is distance to college, as this may be related to college at-
tendance but may not directly e¤ect earnings. Another possible instrument
is birth month, which may be related to years of schooling as it determines
age of school entry and hence years of schooling before a person reaches the
minimum school leaving age.

This interest in use of IV methods has been somewhat diminished by
recognition of problems that arise when instruments are weakly correlated
with the regressor(s) being instrumented.

A weak instrument is one for which Cor[zi;xi] is small. More precisely,
suppose there is one endogenous regressor and several exogenous regressors.
Then the instrument for the endogenous regressor is weak if the correlation
between the endogenous regressor and the instrument is low after partialing
out the e¤ect of the other exogenous regressors. Then it is well-known thatb�IV will be imprecisely estimated. Two other complications can arise.

First, suppose that Cor[zi; ui] is close to zero rather than exactly zero.
Then not only is the IV estimator inconsistent, but it can be more inconsis-
tent than OLS estimator. For example, in the simple case of scalar regressor
x and scalar instrument z, suppose the correlation between x and z is 0:1.
Then IV becomes more inconsistent than OLS if the correlation between z
and u exceeds a mere 0:1 times the correlation between x and u. This re-
sult, emphasized by Bound, Baker, and Jaeger (1995), has led to increased
scrutiny of assumptions regarding the validity of an instrument in any par-
ticular application.

Second, even if Cor[zi; ui] equals zero, regular asymptotic theory per-
forms poorly in �nite samples if the instrument is weak. Theoreticians es-
tablished key results early. Applied researchers to subsequently highlight
the problem were Nelson and Startz (1990) and Bound, Jaeger and Baker
(1995). Staiger and Stock (1997) provided in�uential theory.
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There is a large theoretical literature on inference with weak instruments,
including new testing procedures. Andrews and Stock (2005) provide a re-
cent survey. A related literature considers inference when there are many
instruments, meaning that as the sample size increases so too does the num-
ber of available instruments. A third area, IV estimation in the treatment
e¤ects setting, has already been mentioned.

5.3 Panel Data

Panel data are repeated observations on the same cross-section units, typi-
cally individuals or �rms, for several time periods. The cross-section units
are usually assumed to be independent, though this assumption may be less
appropriate if the cross-section units are states or countries.

An obvious advantage of panel data is that they permit increased pre-
cision in estimation, due to an increased number of observations. It is im-
portant, however, that one control for likely correlation of observations over
time for a given cross-section unit. The usual method is to use cluster-robust
standard errors described in Section 4.1.

The microeconometrics literature has focused on a second advantage of
panel data, that it provides a way to identify causation even if there is
selection on unobservables, provided the unobservables are time-invariant.

The �xed e¤ects linear panel model speci�es

yit = x
0
it� + �i + "it; i = 1; :::; N; (48)

where �i and "it are unobserved. It is assumed that the idiosyncratic error
"it is uncorrelated with xit, but the individual-speci�c error �i is potentially
correlated with xit. Note that while �i is called a ��xed e¤ect� in the
literature, this term is misleading as it is being treated as random. We
focus on short panels, with N ! 1 but T permitted to be small (for a
static linear model it is su¢ cient that T � 2).

To relate this to the treatment e¤ects literature, xit may include a binary
treatment dit that is correlated with the error term �i + "it (selection on
unobservables), but only with the component �i of the error term that is
time invariant. For example, an individual may self-select into a training
program due to unobserved high ability, but this high ability is assumed to
be time invariant.

Pooled OLS regression of yit on xit will lead to inconsistent estimation
of �, due to correlation of regressors with the error. The random e¤ects
estimator of �, the feasible GLS estimator of (48) under the assumption
that both �i and "it are iid, is also inconsistent if in fact �i is correlated
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with xit. For this reason many microeconometrics studies shy away from
random e¤ects models that are widely used in other �elds.

Estimation of transformed models that eliminate �i can lead to consis-
tent estimation. The �xed e¤ects or within estimator is obtained by OLS
estimation of the within model

(yit � �yi) = (xit � �xi)0� + (uit � �ui): (49)

The �rst-di¤erences estimator is obtained by OLS estimation of the �rst-
di¤erences model

�yit = �x
0
it� +�uit: (50)

Note that in both cases only the coe¢ cient of time-varying regressors can
be identi�ed.

Extension to nonlinear models is possible only for some speci�c mod-
els, as there is an incidental parameters problem. The asymptotics rely on
N !1, so the number of parameters (k regression coe¢ cients plus N �xed
e¤ects �i) is going to in�nity with the sample size. Some models permit
transformation that eliminate �i, while others do not. For nonlinear models
with additive error the within and �rst-di¤erences transformations can be
again used. For binary outcomes �xed e¤ects estimation is possible for the
logit model, see Chamberlain (1980), but not the probit model. For count
data, Hausman, Hall and Griliches (1984) presented �xed e¤ects estimation
for the Poisson model and a particular parameterization of the negative bi-
nomial model. The Poisson �xed e¤ects estimator does not require that
the data be Poisson distributed, as it is consistent provided the conditional
mean is correctly speci�ed. An active area of research is developing meth-
ods for general nonlinear �xed e¤ects panel models that while inconsistent
due to the incidental parameters problem, are less inconsistent than existing
methods. See, for example, Woutersen (2002).

Panel data also provide the opportunity to model individual-level dy-
namic behavior, since the individual is observed at more than one point in
time. A simple dynamic linear �xed e¤ects model includes a lagged depen-
dent variable, so that

yit = �yi;t�1 + x
0
it� + �i + "it; i = 1; :::; N: (51)

An important result is that the �xed e¤ects and �rst-di¤erences estimators
of this model are inconsistent. Instrumental variables estimation of the
�rst-di¤erences estimator is possible, using yi;t�2 as an instrument for (yi;t�
yi;t�1). Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991)
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proposed using additional lags as instruments and estimating by GMM using
an unbalanced set of instruments.

For nonlinear dynamic models �xed e¤ects estimation is possible for the
logit model, see Chamberlain (1985) and Honore and Kyriazidou (2000), for
the Poisson model, see Blundell, Gri¢ ths and Windmeijer (2002), and for
some duration models, see Chamberlain (1985) and Van den Berg (2001).

5.4 Structural Models

The classic linear simultaneous equations model (SEM) has deliberately not
been discussed in this section on causation, as the SEM is rarely used in
microeconometric studies. Many causal studies are interested in the mar-
ginal e¤ect of a single regressor on a single dependent variable. In that case
two-stage least squares regression of the single equation of interest is simply
instrumental variables estimation, already discussed. And the IV estimator
has de�ciencies, leading to increased use of other methods given in this sec-
tion. Finally the linear SEM does not extend readily to nonlinear models
and in cases where it does, such as simultaneous equations Tobit models,
the distributional assumptions are very strong.

Another type of structural modelling is microeconometrics models based
on economic models of utility or pro�t maximization. Early references in-
clude Heckman (1974), MaCurdy (1981) and Dubin and McFadden (1984).
The more recent labor literature most commonly uses structural economic
models to explain employment dynamics, see for example Keane and Wolpin
(1997). Reiss and Wolak (2005) provide a survey of structural modelling in
industrial organization.

6 Heterogeneity

A loose de�nition of heterogeneity is that data di¤ers across observations.
In a regression context this heterogeneity may be due to regressors (observ-
ables) or due to unobservables.

We begin by considering heterogeneity due directly to observed regres-
sors. For the linear regression model yi = x0i� + ui with E[uijxi] = 0,
E[yijxi] = x0i� so that heterogeneity induces heterogeneity in the conditional
means, though not in the marginal e¤ects @E[yijxi]=@xi = �. Nonlinear-
ity in the conditional mean, e.g. E[yijxi] = exp(x0i�), will induce marginal
e¤ects that di¤er across individuals. Even simple parametric nonlinear mod-
els such as probit and Tobit have this feature. The standard method is to
present a single summary statistic. Often the marginal e¤ect is evaluated
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at x = �x, but for most purposes a better single measure is the sample av-
erage of the individual marginal e¤ects. Single-index models, i.e. E[yijxi] =
g(x0i�), have the advantage that the ratio of marginal e¤ects for two di¤erent
regressors equals the ratio of the corresponding parameters, and does not
depend on the regressor values. So if one coe¢ cient is twice another than
the corresponding marginal e¤ect is twice as large. Quite �exible modelling
of heterogeneity in E[yijxi] and the associated marginal e¤ects is possible
using nonparametric regression of y on x. This yields very noisy estimates
for high dimension x, leading to use instead of semiparametric methods such
as those given in Section 3.6.

More challenging is controlling for unobserved heterogeneity that is due
to factors other than the regressors. Then di¤erent individuals have di¤er-
ent response even if the individuals have the same value of x. Failure to
control for this unobserved heterogeneity can lead to inconsistent parame-
ter estimates and associated marginal e¤ects. A simple example is omitted
variables bias in the linear regression model, where the omitted variables
form part of the unobserved heterogeneity. The source of the unobserved
heterogeneity can also matter. In particular, in structural models of eco-
nomic behavior a distinction is made as to whether or not the unobserved
(to the econometrician) heterogeneity is known to the decision-maker.

Meaningful discussion of unobserved heterogeneity requires statement
of an underlying structural relationship that we wish to estimate in the
presence of unobserved heterogeneity. Wooldridge (2002, 2005) provides a
fairly general framework. We suppose that interest lies in a conditional mean
m(x; u) = E[yjx; u] or more formally

m(x; u) = E[Y jX = x; U = u];

where u is unobserved and for simplicity is a scalar. Ideally we would es-
timate m(x; u), but instead we are restricted to what Blundell and Powell
(2004) call the average structural function (ASF)

m(x) = EU [m(x;U)];

which integrates out the unobserved heterogeneity. Often interest lies in
how ASF changes as the jth regressor, say, changes. This is the average
partial e¤ect (APE)

@m(x)

@xj
= EU

�
@m(x; U)

@xj

�
:

Unobserved heterogeneity poses a problem because the ASF m(x) in general
di¤ers from the conditional mean E[yjx] =EU jx[m(x;U)], and hence APE
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di¤ers from @E[yjx]=@xj , but it is only E[yjx] that is identi�ed from the
observed data.

The simplest assumption, and one commonly made, is that u is inde-
pendent of x, as then E[yjx] = m(x). In a model with additive heterogene-
ity analysis is particularly straightforward. If m(x; u) = g(x;�) + u then
E[yjx] = g(x;�) given u independent of x with mean zero. Analysis is more
complicated if unobserved heterogeneity enters in a nonlinear manner. For
example, if m(x; u) = g(x0� + u) then E[yjx] = Eu[g(x0�+u)] will typically
require speci�cation of the distribution of u and integration over this. In
some cases analytical expressions can be obtained. In other cases numer-
ical methods are used. If u is low dimensional (in many applications it is
a scalar) then Gaussian quadrature methods work well. Otherwise simula-
tion methods given in Sections 4.3 and 4.4 can be used. Examples include
negative binomial models for counts obtained by a Poisson-gamma mixture,
Weibull-gamma mixtures for durations, random utility models for binary
and multinomial data (where u is now a vector) and normal mixtures for
linear and nonlinear panel data. While often the unobserved heterogeneity is
interpreted as a random intercept, this can be generalized to random slopes
(a random coe¢ cients model). An alternative is �nite mixtures models, used
particularly in duration and count data analysis.

Panel data o¤er the opportunity to permit u to be dependent on x. In
that case uit is decomposed into a time-varying component that is indepen-
dent of xit and a time-invariant component that may be correlated with xit.
Fixed e¤ects estimators for these models have been discussed in Section 5.3.
It is important to note that in nonlinear models these methods identify �
but not ASF, so that the APE�s are only estimated up to scale.

Panel data also o¤er the possibility of distinguishing between persistence
in behavior over time due to unobserved heterogeneity and persistent in
behavior over time due to true state dependence. For example, rather than
the static linear model yit = x0it� + ui + "it, where correlation of ui with
xit causes problem, a more appropriate model may be a dynamic model
yit = �yi;t�1 + x0it� + "it where there is now no complication of unobserved
heterogeneity. These models have quite di¤erent structural interpretation
with quite di¤erent policy consequences. For example, high persistence of
unemployment given regressors may be due to stigma attached to being
unemployed (state dependence) or may be due to unobserved low ability
(unobserved heterogeneity).

The treatment e¤ects literature allows for unobserved heterogeneity. By
assuming that selection is on observables it is possible to estimate ATET(x)
which is the APE for the treatment variable.
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Wooldridge (2002, 2005) proposes use of proxy variables to identify the
ASF and APE. For simplicity, consider the linear model y = x0� + u. If
E[ujx] = 0, thenm(x) = E[yjx] = x0� so unobserved heterogeneity causes no
problem. Now consider an omitted variables situation where u = z0+" with
E["jx] = 0 but E[zjx] 6= 0. The ASF is m(x) = x0�+ E[z]0, whereas the
conditional mean E[yjx] = �+ E[zjx]0. These terms di¤er unless E[zjx] =
E[z], the case if the unobserved heterogeneity is independent of x. A weaker
assumption than independence is to assume that there is a proxy variable
w for z with the properties that (1) x and z are independent conditional on
w so E[zjx;w] = E[zjx], and (2) E[yjx;w; z; "] = E[yjx;w; z; "] so that z is
redundant in the original model. Then E[yjx;w] = x0�+ E[zjw]0 which can
be identi�ed by regression of y on x and z. Taking the expected value with
respect to w then gives the desired ASF. Wooldridge (2005) generalizes this
approach to nonlinear models and argues that even though failure to control
for unobserved heterogeneity may lead to inconsistent parameter estimates,
it is still possible in some cases to consistently estimate ASF and APE.

There is also a growing literature on heterogeneity in nonparametric
models. See for example, Matzkin (2006). A simple approach is to start
with the conditional cdf F (yjx) which can be nonparametrically estimated.
If we de�ne u = F (yjx), then u is uniformly distributed on (0; 1) and hence
uncorrelated with x. Inverting we obtain y = F�1(ujx) = G(x; u). This
provides a decomposition into observables x and unobservables u that are
independent of x, a separable model. But this is not a structural model in
the sense of the ASF given earlier.

Controlling for unobserved heterogeneity is an active area in microecono-
metrics, as much of the variation in the outcome is due to unobserved factors
since typically R2 < 0:5. It is particularly important when there is sample
selection or self-selection. For example, in OLS regression we essentially re-
quire only that E[ujx] = 0, whereas if the sample is truncated or censored
much stronger assumptions on u are needed even if semiparametric methods
are used. Heckman (2000, 2005) and related papers explicitly considers het-
erogeneity and structural estimation. See also Blundell and Powell (2004)
and Wooldridge (2005).

Still to come: IV and quantiles.

7 Data Issues

Microeconometrics data are usually survey data that come from sampling
schemes more complicated than simple random sampling, and are often sub-
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ject to measurement error or are even missing due to nonresponse. For
completeness this section provides a survey of these topics, which receive
relatively little attention in econometrics. Sampling schemes, measurement
error and missing data are presented in, respectively, Sections 6.1 to 6.3.

7.1 Sampling Schemes

Survey data often use strati�ed and clustered sampling to lower interview
costs and to provide more precise estimates for population subgroups, such
as regions with relatively few people, than would otherwise be the case.
The extensive sample survey literature, initially focused on estimation of
population means but then extended to the regression case, has generally
been ignored by the econometrics literature.

The �rst issue raised by survey sampling schemes is that the sample is
no longer representative of the population.

If the sampling involves endogenous strati�cation, i.e., strati�cation is
on a variable that is the dependent variable in a regression, then standard
estimation methods lead to inconsistent parameter estimates. Examples
include truncated regression (e.g., hours of work are modelled and only
workers are surveyed), choice-based sampling (e.g., commute mode choice is
modelled and bus-riders are deliberately oversampled as there are relative
few bus riders), on-site sampling and case-control studies.

Let the conditional distribution of y given x be denoted f(yjx;�). Usu-
ally the joint density of y and x is g(y;xj�) = f(yjx;�) � g(x), where the
parameters in g(x) are suppressed. Since g(x) does not involve �, so that
inference on � can be based on the conditional (on x) log-likelihood. Un-
der endogenous strati�cation, however, it can be shown that g(y;xj�) takes
a more complicated form, and MLE needs to be based on the joint log-
likelihood based on g(y;xj�), rather than only on f(yjx;�).

Much of the econometrics literature has focused on choice-based sam-
pling in discrete choice models, with references including Manski and Ler-
man (1977) who proposed a weighted MLE and Imbens (1992) who presented
more e¢ cient GMM methods. A more general presentation for endogenous
strati�cation is given by Imbens and Lancaster (1996). Wooldridge (2002)
considers inverse-probability weighted estimators.

If the sampling scheme involves strati�cation on exogenous regressors
then the problems are less severe. Surveys provide sample weights that
can be used to obtain population representative statistics. These sample
weights need not be used in the typical situation where correct speci�cation
of a regression model is assumed. For example, if it is assumed that the
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regression function is linear in x, so that y = x0� + u with E[ujx] = 0
so that E[yjx] = x0�, then OLS is consistent even if the regressors x are
not representative of the population in x. If instead we wish to do OLS
without the linearity assumption, then weighted OLS should be used as it
provides an estimate of the so-called census coe¢ cients; see DuMouchel and
Duncan (1983). For example, a weighted OLS regression of earnings on
years of schooling provides a consistent estimate of the population marginal
e¤ect on earnings of one more year of schooling, without assuming that the
model is linear. Wooldridge (2001) gives a general treatment of weighted
m-estimation.

By using knowledge of the exogenous strati�cation scheme it is possible
to improve the e¢ ciency of estimation, but this is rarely done in practice in
part because the e¢ ciency gains are felt to be relatively small.

The preceding discussion has presumed that observations are indepen-
dent, but survey methods often induce dependence for subgroups of obser-
vations. For example, several households on the same block may be inter-
viewed. Then data in that subgroup are likely to be positively correlated,
and even after controlling for regressors, model errors are likely to be posi-
tively correlated.

Usually the assumption that errors are uncorrelated with regressors is
maintained. The standard procedure is to use cluster-robust standard errors,
presented in Section 4.1. Hierarchical linear models or multilevel models
are often used in other social science disciplines. If clustering is felt to
induce correlation of errors with regressors, then cluster-speci�c �xed e¤ects,
analogous to an individual-speci�c �xed e¤ect in a panel data model, may
also be used.

A related topic is that of spatial correlation where observations in nearby
regions, such as adjoining states, are likely to be correlated. Such correla-
tion is rarely controlled for, though methods have been developed. See, for
example, Anselin (2001) and Lee (2004).

7.2 Measurement Error

Standard results for measurement error consider the linear regression model
with classical measurement error. More recent work has considered nonlinear
regression models and, in some cases, nonclassical measurement error.

Suppose y = �x�+u, with error u uncorrelated with x�, but we observe x
rather than x� and regress y on x. Then, from Angrist and Krueger (1999),
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the OLS estimator b� = [Pi x
2
i ]
�1 P

i xiyi is in general inconsistent as

plim b� =
h
plimN�1

X
i
x2i

i�1
� plimN�1

X
i
xi(�x

�
i + ui) (52)

= [V[x]]�1Cov[x; x�]�

= ��;

where � = Cov[x; x�]=V[x] is the reliability ratio of x as a measure of x�,
and we have assumed that plimN�1P

i xiui = 0. This assumption that x is
uncorrelated with u requires the additional assumption that u is uncorrelated
with the measurement error v = x�x�, in addition to the usual assumption
that the model error u is uncorrelated with x�.

The size of the inconsistency depends on the size of the reliability ratio,
which has been measured in various survey validation studies. Angrist and
Kruger (2001, p.1346) present a summary table with reliability ratios for
log annual earnings, annual hours and years of schooling ranging from 0.71
to 0.94. Bound, Brown, and Mathiewetz (2001, pp. 3749-3830) summa-
rize many validation studies for labor-related data that also indicate that
measurement error is large enough to lead to appreciable bias in OLS coef-
�cients.

Result (52) makes few assumptions beyond independence of measure-
ment error and model error. Textbook treatments of measurement error
emphasize the classical measurement error model, a more restrictive model,
that assumes

y = �x� + u, u � iid
�
0; �2u

�
(53)

x = x� + v, v � iid
�
0; �2v

�
and x� � iid

�
0; �2x�

�
:

Then plim b� = ��, where � = �2x�=(�2x�+�2v) = 1=(1+s) where s = �2v=�2x� is
the noise-to-signal ratio. Since s � 0, b� is downward biased asymptotically
towards zero, a bias called attenuation bias. The attenuation bias is reduced
if additional (correctly measured) regressors are included, and is increased
if panel data are used with estimation by di¤erencing methods such as the
within estimator.

There are several ways to secure identi�cation of �. These include in-
strumental variables methods (assuming availability of an instrument z that
is correlated with x� but not with the model error u), use of replicated
data or validation sample data to estimate key sample cross-moments, and
use of additional distributional assumptions, such as symmetry of the error.
Bounds on � can also be obtained using reverse regression. Wansbeek and
Meijer (2000) review many identi�cation methods.
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The preceding methods do not generalize easily and in a systematic way
to nonlinear models. Carroll, Ruppert and Stefanski (1995) summarize the
statistics literature and Hausman (2001) considers the econometrics litera-
ture.

Y. Amemiya (1985), who focused on polynomial regression, showed that
instrumental variables methods do not extend easily to nonlinear regression
models with additive error. Most studies consider use of repeated mea-
sures; see, for example, Hausman, Newey and Powell (1995), Li (2002), and
Schennach (2004). Schennach (2006) proposes an instrumental variables
estimator.

For nonlinear models with nonadditive error, such as discrete outcome
and count models, measurement error in either a regressor or the dependent
variable cause problems. Hausman, Abrevaya and Scott-Morton (1998) con-
sider mismeasurement in the dependent variable in binary outcome models.
Guo and Li (2002) consider mismeasurement in a regressor in a Poisson
model. These papers take a parametric approach with strong assumptions.

The classical measurement error maintains that the measurement error
is iid. Some work relaxes this. An early example is that for binary regressor
the measurement error is necessarily correlated with the true value, since
the only way to mismeasure a value of 0 is as a 1, and vice-versa. Kim and
Solon (2005) consider standard linear panel estimators when measurement
error in a regressor is negatively correlated with the true value.

7.3 Missing Data

Missing data due to survey nonresponse is common. Simple corrections
include dropping an observation if any variable is missing (listwise deletion
or case deletion) and simple imputation methods such as using the sample
average or predictions from a �tted regression model.

The modern approach is to use multiple imputation methods that regard
missing data as random variables and replaces with draws from an assumed
underlying distribution.

The starting point is terminology and assumptions made about the na-
ture of the process leading to missing data on wi, say, due to Rubin (1976).
These have many similarities with the potential outcomes model where the
unknown counterfactual can also be viewed as a missing data problem. If
the probability of wi being missing depends on neither its own value or on
other data in the data set then wi is missing completely at random (MCAR),
and missing data on wi causes no problems aside from e¢ ciency loss. If the
probability of wi being missing depends on other data in the data set, but
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not its own value, then wi is missing completely at random (MAR), and
missing data may lead to estimator inconsistency. If wi is MAR, then it is
adjust for missingness if the missing data mechanism is ignorable, meaning
that the parameters of the missing data mechanism are unrelated to the
parameters that we estimate, similar to weak exogeneity.

LetW = (Wobs;Wmiss) denote the data partitioned into observed and
missing observations, and supposeW has density f(Wj�). Suppose we ob-
tain imputed valueW(I)

miss and then obtain the MLE based on f(Wobs;W
(I)
missj�).

This will overstate estimator precision as it fails to account for the uncer-
tainty created by imputation ofW(I)

miss. Multiple imputation overcomes this
by obtaining m di¤erent imputed values forWmiss and hence m estimatesb�r, r = 1; :::;m with associated variance matrices bVr = bV[b�r]. Then

The key is imputingWmiss. The multiple imputation literature focuses
on doing so assuming MAR with ignorable missingness. There are several
ways to make imputations. A preferred, though computationally expen-
sive method, is to use data augmentation and MCMC methods. Given
an sth round estimate of �(r) we impute W(r+1)

miss by making a draw from
f(WmissjWobs;�

(r)). Then a new estimate �(r+1) is obtained by drawing
from f(�jWobs;W

(r)
miss). The chain is continued to convergence, giving an

imputed value forWmiss.
For further details see Little and Rubin (1987), Rubin (1987) and Schafer

(1997).
Also bring in probability weighting and two-stage IV - Angrist and

Krueger (1997) and Mo¢ tt and Ridder (2006).

8 Conclusion

Microeconometricians are very ambitious in their desire to obtain marginal
e¤ects that can be given a causative interpretation, permit individual het-
erogeneity and are obtained under minimal assumptions. The associated
statistical inference should also rely on minimal assumptions. This has led
to a literature and toolkit that goes way beyond extending a linear structural
equations model approach to a nonlinear setting.

This survey has of necessity been selective. The methods used in labor
economics and public economics have been emphasized. General approaches
have been presented, with specialization usually to the linear model. For
econometrics methods for speci�c types of data - binary, multinomial, dura-
tions and counts - good starting points are the monographs by, respectively,
Maddala (1983), Train (2002), Lancaster (1990), and Cameron and Trivedi
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(1998), as well as the texts cited in the introduction.
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